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Abstract

Nuclear fragmentation cross sections of Silberberg and Tsao that

arc more accurate for a hydrogen target have been implemented in

the data base to replace those of Rudstam for a galactic cosmic ray

transport code (HZETRN). Sample calculations have been made for the

transported galactic cosmic ray flux through a liquid hydrogen shield
at solar minimum condition to determine the effect of such a change.

The transported flux based on the Silberbc_y-Tsao semiempirical for-
realism contains fewer high-LET (linear energy transfer) components

but more low-LET components than the results bascd on Rudstam's for-

realism; and this disparity deepens as the shield thickness increases. A

comparison of the results obtained from using both energy-dependent

and energy-independent cross sections of Silberberg and Tsao indicates

that the energy-independent assumption results in an underestimation

of high-LET flux above 100 kcV/pm by approximately 30 percent for

a 15-g/cm 2 thickness of liquid hydrogen. Similar results were ob-
tained in a previous study (NASA TP-32_3) when both energy-dependent

and energy-indcpcndent cross sections of Rudstam were considcrcd.

Nonetheless, the present study found that an energy-independent cal-
culation would be bcst accomplished by using Rudstam's cross sections

as doric in the past for various engineering applications.

Introduction

Estimates of galactic cosmic ray exposure and

the required shielding for astronauts during their

interplanetary mission rely on radiation transport
codes that accm'ately describe the interactions and

propagation of these radiation fields throughout the

bulk medium (ref. 1). HZETRN (rcf. 2), which is

a state-of-the-art galactic cosmic ray transport code

developed at the Langley Research Center, contains
detailed descriptions of physical processes such as

energy loss, nuclear absorption, and fragmentation

cross sections of projectile ions. However, the un-
certainties of nuclear fragmentation cross sections

existing in the code remain fairly large because of
the lack of reliable experimental data (ref. 3). This

condition is especially true for collisions of heavy

ions on heavy ions for which the results of NUCFRG

(ref. 4), based on a semiempirical abrasion-ablation
model, are used as inputs to HZETRN. (Note that an

improved vcrsion of a heavy ion fragmentation model
will be available for use as inputs in the immediate

future.) For collisions of heavy ions on protons,
Rudstam's semiempirical parametcrization (ref. 5)

has been used in the existing HZETRN.

Rudstam and Metropolis et al. (refs. 5 and 6,

respectively) were the pioneers who systematizcd

high-energy cross section measurements into a use-
ful analytical relationship describing nuclear reac-

tions. These analytical rclationships have been re-

vised and improved by many new researchers as new
cross-section data become availablc. The most com-

prehensive set of semiempirical estimates of cross

sections for a hydrogcn target is perhaps due to

Silbcrbcrg and Tsao (rcfs. 7 and 8), and to the most
recent work of \_k, bber, Kish, and Schrier (ref. 9).

In the present study, the formulation of Silberberg

and Tsao for a hydrogen target will replace that of

Rudstam in HZETRN, and the effect of such a re-

placement will be examined for estimates of galactic

cosmic ray exposure using liquid hydrogen as a shield.

Transport Methods

As energetic ions traverse through bulk mat-
tcr, they lose energy through their interaction with

atomic electrons along their trajectories. On occa-

sion, they interact violently with nuclei of the matter

and thus produce ion fragments or secondary nucle-

ons moving in the forward direction and low-energy

fragments of the struck target nucleus. The transport
problem for thc short-range targct fragments can be

easily solved in closed form in terms of collision den-

sity (ref. 10) and treatcd separately. Hence, the

projectile-ion fragment or secondary nucleon trans-
port is the remaining problem of interest. In the

previous work (rcf. 10), the projectile-ion fragments

and secondary nucleons were treated as if all went

straight ahead (rcf. 11). The straight-ahead approx-
imation is found to be quite accurate for the nearly

isotropic cosmic ray fluencc (ref. 10).



Becauseof the longrangeof thecoulombforceandthe largepercentageof tile materialvolumebeing
occupiedby electrons,the electroninteractionscan,to a goodapproximation,be treatedas a continuous
slowing-downprocessoveranyfinitepath length. Althoughtile energylostby an ion oversomefixedpath
lengthfluctuatesabouta meanvalue,this fluctuationamountsto nomorethana fewpercent(refs.12-15)
andis of no importancein the studyof spaceradiation.In tile following,a continuousslowing-downtheory
will beassumed,andtherelevantquantityis theaveragelossperunit of pathlength.

With thestraight-aheadapproximationandtile targetsecondaryfragmentsneglected(refs.10and11),tile
transportequationmay"bewrittenas

O O S(E)+aj(E) c)j(x,E): fjk(E,E') _bk(x,E' ) dE' (1)

where Zj (x, E) is tile flux of ions of type j with atomic mass Aj and charge Zj at x moving along the z-axis at.

energy E (in units of MeV/amu), _j is the corresponding macroscopic nuclear absorption cross section, S(E) is

the stopping power (continuous slowing-down approximation) of the protons, fji.(E, E') is a differential energy

cross section for production of ion j in collision by ion k, and L,j is the range scaling paranieter that is defined
as

The solution to equation (1) is found to be subject to the boundary condition at x = 0 (that is, Oj(0, E)),
which is the incident Imam spectrum.

By transforming the heavy ion transport, equation to an integral along the characteristic curve of that

particular ion (ref. 10) and using the perturbation theory (ref. 16), the solution to equation (1) is given as a

stepping procedure with step size h in the .r-direction (ref. 17). Thus,

where

_/?j(x + h, r) _ exp[-_j(r, h)] g,j(z, r + t/jh)

+ Z JO Jr exp[-¢J(r'z)-¢k(r"h-- z)] f Jk(r + uJz'r')
k

× Zdz,/+ .,,(h - _)]e_' dz

rj is the residual range of ion j given by

Zj(_, _j) = s(E) ¢_(x,E)

fO E dE_rj(E) = Sj(E')

and the exponential is the integrating factor with

//(j(r, t) = aj(r + _jt') dt'

Currently, we assume for Zj > 1 and k > j that

]jk(_,/) = fCk(_')_(, -/)

(3)

(4)
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Usingequation(4),equation(3)nowbecomes

+ h,O h)] + .jh)

/0+ E dz exp[-_j(r, z) - _k(r', h - z)] ajk(r' )
k

× + ,.k(h - z)] (5)

with r; = r + vjz. Equation (5) is further approximated as

ghj(x + h,r) _ exp[-_j(r,h)] _j(x,r + _,jh)

fo"+E dz exp[-Qj(r,z)-¢k(r,h-z)] ajk(r) _!'k[x,r_-vjZ+Vk(h.--z)]
k

exp[-aj(r) h] (;j(x,r + ujh)

f h] - ;,]E+

+ -  j)h] (6)

Equation (6) is the stepping formalism with energy-dependent cross sections fl)r k >'tHe. The corresponding

stepping formalism fi_r nucleons has been discussed in detail in references 8 19. These stepping formalisms are

then used to march the solution fl'om the surface boundary to the desired shield thickness.

Nuclear Fragmentation Data Base

Even though the accuracy of the experimental

data may improve for specific reactions, a reason-
able means of representing data in computational

procedures for cosmic ray transport calculation is
still a challenge. For HZETRN and other radia-

tion transport, codes developed at Langley (refs. 18

and 20), a point representation of the data is avoided
because large multidimensional arrays will eventu-

ally rival computer storage. Instead, various semi-

empirical methods suitable for certain target or frag-

ment groups are put together in generating the data.
base. These semiempirical methods, which are built
on available experimental data and some theoretical

base describing approximately the systematic varia-
tion of reaction cross sections, offer the possibility

of implementing any additional necessary correction

factors or adjusting some existing parameters.

When a nucleus is collided by high-energy nucle-

ons, some individual nuclear constituents are ejected

by direct knockout (ref. 21). The remaining nuclear
structure is left in an excited state which seeks an

equilibrium minimum-energy configuration through

particle emission (ref. 5). This state is the basis of
Rudstam's formulation for the systematics of spal-

lation products produced in such collisions. In his

formalism, the distribution of resultant isotopes that
are related to the statistical nature of the evaporation

process (ref. 22) is assumed to be Gaussian centered

at the nuclear stability line, and the total change
in nuclear mass and the dependence on the incident

projectile energy are treated empirically. Following
Rudstam's work, Silberberg and Tsao (refs. 7 and 8)
later added more corrective factors to the formalism

as more experimental data became available. In ad-

dition, they added a scaling factor that relates the

fragmentation cross section produced on a hydrogen

target to that on the heavier target.

Samples of fragmentation cross section ajk used

as inputs to tlZETRN arc shown as a function of

projectile-ion charge Z k and fragment-ion charge Zj
in figures 1 and 2 for a liquid hydrogen target and

in figures 3 and 4 for a water target at various en-

ergies of the projectiles. Figures 1 and 3 reflect the
results produced by using Rudstam's formalism for

the fragments with Zj > 2, whereas figures 2 and 4
reflect those by using the Silberberg-Tsao formal-
ism. For nucleon and helium fragments, the cross
sections were obtained from the results of Bertini

et al. (refs. 23 and 24). (Note that the cross section
shown in the figures has been reduced, for conve-

nience, by a factor of 10 for nucleon fragments and a
factor of 4 for helimn fragments.) Because the scal-

ing factor in the. formalism of Silberberg and Tsao

does not. give adequate results for a target heavier

than hydrogen (ref. 25), the semiempirical abrasion-
ablation model (ref. 4) is used in obtaining the cross



sectionscontributedby theoxygenionsin tile water
target.

For all the crosssectionsshownin figures1 4
at threeseparateprojectileenergies(150,600,and
2400MeV/amu),thepeakof thefragmentsspectra
(at constantZk) is generally higher as predicted

by Rudstain than that predicted by Silberberg and

Tsao. Conversely, the spread from the peak to
the fragments with lower Z is lower for Rmtstam,

whereas tile zig-zag shape over even and odd Z
charges is more pronounced J,,r Si!berl_erg and Tsao.

At energies below 150 MeV/amu. ,:.ornc _.'_-alts (not

shown) given by Rudstam's formalism a_e erroneous;
thus, for the transport calculations presented herein,

the values of cross section at 150 MeV/amu have been
extrapolated to below 150 MeV for projectile ions

with Z > 20, as has been clone in reference 17.

Results

By using lRudstam's formalism, several studies
were made in the past that involved galactic cosmic

ray (GCR) transport calculations through a shield

that contained hydrogen atoms, sueh as water (tis-

sue equivalent) (refs. 26 and 27) or liquid hydrogen
(ref. 28). In these calculations, the cross sections

were assumed to be energy independent and set equal
to the asymptotic values at high energy. Recently,

improvements were made to ItZET1RN by removing

the energy-independent assumption; and the effects

of such changes to the existing results were exam-
ined in terms of LET spectra that showed a substan-

tial enhancement of high-LET components (ref. 17).

In the present, study, t].udstam's formalism was re-
placed by that of Silberberg and Tsao, and the effect

of that replacement was then examined by comparing

the GC1R exposure levels behind the liquid hydrogen

shield at the solar minimum condition given by the
CREME model of reference 29.

The high-LET radiation components are usually
degraded to lower LET components as a result of

nuclear interactions between projectile and target

nuclei, and such processes become more significant
as the particles penetrate farther into the shield

medium. This degradation is illustrated in figure 5

in which the annual differential dose and dose equiv-

alent are plotted as a function of LET (or L) for
2-, 5 , and 15 g/cm 2 thicknesses of the shield. The

spikes seen in the figures correspond to the zero slope
of stopping power (dS/dE = 0) at. minimum ioniza-

tion (ref. 30) of each ion, with protons starting at; the

lowest LET followed by increasing Z fl_r the increas-
ing L. Because the LET coordinate is plotted on a

logarithm scale, the. differential dose L dN/dL is con-

verted to L 2 dN/dL (where N = J'0 dE) so that the

area under the curve is linearly proportional to the

total dose. Similarly, the differential dose equivalent

is plotted as QL 2 dN/dL, where the quality Q is a

function of L. The magnification in close equivalent

at the high-LET region is a result of the ICRP 60

quality factor (ref. 31).

The differences between the spectra for the frag-

mentation cross section by Rudstam's formalism

(fig. 1) and those by Silberberg and Tsao (fig. 2)
as discussed earlier are reflected in the calculated

LET spectra for the transported flux through the

liquid hydrogen shield. In figure 6(a), the ratio of
tbt, LET spectra for the differential flux calculated

by' using Silberberg and Tsao relative to that by us-
ing Rudstam is displayed for the three thicknesses

of the shield. The Silberberg-Tsao model produces

more lower Z fragments and fewer higher Z frag-

ments, and therefore more lower LET components

and fewer higher LET components according to the
spikes identified for each ion in figure 5. As a re-

sult, the ratio (fig. 6(a)) is higher at. LET values near
the 100-MeV/cm region and lower at higher vahles of

LET. These deviations from unity become more pro-
nounced as the shield thickness increases. A similar

comparison of integral flux LET spectra is shown in
figure 6(b) in which the ratio at the lowest LET is al-

most identical to unity; this indicates that the total

flux does not change appreciably because of differ-

ences in the fragmentation model.

In the previous study (ref. 17), the removal of
the energy-independent assumption was important

in the risk assessment of GCIt exposure. Using

the liquid hydrogen shield as an example, the LET

components above i00 keV/#m (or 1000 MeV/cm),
which could contribute some biological-risk orders

of magnitude higher than the lower components,

were shown to increase by 40 percent at a 15-g/cm 2

thickness because of the removal of the assumption.
This conclusion was b_ed on the use of Iludstam's

formalism. Similar results were obtained in figure 7

with the data base given by Silberberg and Tsao.

Note in figure 5 that the region near 10000 keV//lm

was not as critical because of the diminishing flux in
this region.

A comparison is made with the transport calcu-

lations using the energy-dependent Silberberg-Tsao

data base and the energy-independent data base from
1Rudstam to serve as a reference for the earlier GCIR

exposure studies made with the old data base and

the assumption of an energy-independent cross sec-

tion which is taken to be the asymptotic value at

2 GeV/anm. The ratio of the two calculations in
LET spectra, for both differential and integral flux

shown in figures 8(a) and 8(b), respectively, displays



almost an oscillatory behavior over a wide range of

LET. Thus, some of the differences are probably can-

celled out. One arrives at the interesting observa-

tion that an energy-independent calculation using

the Rudstam cross sections yields results similar to

those of an energy-dependent calculation using the

Silberberg-Tsao values.

Concluding Remarks

Nuclear fragmentation cross sections of Silber-

berg and Tsao that arc more accurate for a hy-

drogen target have been placed in the data base

for calculations of galactic cosmic ray (GCR) trans-

port. When compared with the old data base of

Rudstam, the Silberberg-Tsao model produces fewer

higher charge fragments but more lower charge frag-

ments. Sample calculations of GCR transport with

a liquid hydrogen shield reflect such differences of

cross sections in that the transported flux based on

the Silberberg-Tsao model contains fewer high-LET

(linear energy transfer) components but more lower

LET components. This disparity deepens as the

shield thickness increases. When the Silberberg-Tsao

cross sections are assumed to be energy indepen-

dent in the data base, the comparative results in-

dicate an underestimation of the LET components

above 100 keV/#m by approximately 40 percent for a

15-g/cm 2 thickness of liquid hydrogen caused by the

assumption. Moreover, the present study found that

an energy-independent calculation would be best ac-

complished by using Rudstam's cross sections as done

in the past.

NASA Langley Research Center

Hampton, VA 23681-0001

June 8, 1993
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Figure 1. Semiempirical, differential fragmentation cross section for liquid hydrogen target as function of

projectile-ion charge Z k and fragment-ion charge Zj according to Rudstam's formalism for fragments heavier

than helium. Cross sections shown for nucleon and helium fragments have been reduced by factors of 10

and 4, respectively. (1 cm2/g converts to 1.67 barns.)
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Figure 2. Semiempirical, differential fragmentation cross section for liquid hydrogen target as function of
projectile-ion charge and fragment-ion charge according to Silberbcrg-Tsao formalism for fragments heavier
than helium. Cross sections shown for nucleon and helium fragments have been reduced by factors of 10

and 4, respectively. (1 cm2/g converts to 1.67 barns.)
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Figure 3. Semiempirieal, differential fragmentation cross section for water target as function of projectile-

ion charge and fragment-ion charge according to Rudstam's formalism for fragments heavier than helium.
Cross sections shown for nucleon and helium targets have been reduced by factors of 10 and 4, respectively.

(1 cm2/g converts to 29.9 barns.)
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Figure 4. Semiempirical, differential fragmentation cross section for water target as function of projectile-

ion charge and fragment-ion charge according to Silberberg-Tsao formalism for fragments heavier than

helium. Cross sections shown for nucleon and helium fragments have been reduced by factors of 10 and 4,

respectively. (1 cm2/g converts to 29.9 barns.)
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Figure 5. Differential LET spectra for annual dose equivalent behind various thicknesses of liquid hydrogen

shield exposed to GCR at solar minimum.
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Figure 6. Comparison of LET spectra for transmitted GCR flux calculated by using Silberberg-Tsao energy-

dependent cross sections relative to the flux by Rudst, am through several thicknesses of liquid hydrogen

shield at solar minimum.
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Figure 7. Comparison of LET spectra for transmitted GCI1 flux calculated by using Silberberg-Tsao energT-

dependent cross sections relative to the flux by energy-independent cross sections through several thicknesses

of liquid hydrogen shMd at solar minimum.
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Figure 8. Comparison of LET spectra for transmitted GCIR flux calculated by using Silberberg-Tsao energy-

dependent cross sections relative to the flux by Rudstam energy-independent cross sections through several

thicknesses of liquid hydrogen shield at solar minimum.
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